On 2-Detour Subgraphs of the Hypercube

نویسندگان

  • József Balogh
  • Alexandr V. Kostochka
چکیده

A spanning subgraph H of a graph G is a 2-detour subgraph of G if for each x, y ∈ V (G), dH(x, y) ≤ dG(x, y) + 2. We prove a conjecture of Erdős, Hamburger, Pippert, and Weakley by showing that for some positive constant c and every n, each 2-detour subgraph of the n-dimensional hypercube Qn has at least c log2 n · 2n edges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypercube subgraphs with local detours

A minimal detour subgraph of the n-dimensional cube is a spanning subgraph G of Qn having the property that for vertices x, y of Qn, distances are related by dG(x; y) dQn(x; y) + 2. For a spanning subgraph G of Qn to be a local detour subgraph, we require only that the above inequality be satis ed whenever x and y are adjacent in Qn. Let f(n) (respectively, fl(n) ) denote the minimum number of ...

متن کامل

On k-detour subgraphs of hypercubes

A spanning subgraph G of a graph H is a k-detour subgraph of H if for each pair of vertices x, y ∈ V (H), the distance, distG(x, y), between x and y in G exceeds that in H by at most k. Such subgraphs sometimes also are called additive spanners. In this paper, we study k-detour subgraphs of the n-dimensional cube, Qn, with few edges or with moderate maximum degree. Let ∆(k, n) denote the minimu...

متن کامل

خواص متریک و ترکیبیاتی مکعب‌های فیبوناتچی و لوکاس

An n-dimensional hypercube, Q_n, is a graph in which vertices are binary strings of length n where two vertices are adjacent if they differ in exactly one coordinate. Hypercubes and their subgraphs have a lot of applications in different fields of science, specially in computer science. This is the reason why they have been investigated by many authors during the years. Some of their subgraphs ...

متن کامل

Perfect Matchings in Edge-Transitive Graphs

We find recursive formulae for the number of perfect matchings in a graph G by splitting G into subgraphs H and Q. We use these formulas to count perfect matching of P hypercube Qn. We also apply our formulas to prove that the number of perfect matching in an edge-transitive graph is , where denotes the number of perfect matchings in G, is the graph constructed from by deleting edges with an en...

متن کامل

Upper bounds on the size of 4- and 6-cycle-free subgraphs of the hypercube

In this paper we modify slightly Razborov’s flag algebras machinery to be suitable for the hypercube. We use this modified method to show that the maximum number of edges of a 4-cycle-free subgraph of the n-dimensional hypercube is at most 0.6068 times the number of its edges. We also improve the upper bound on the number of edges for 6-cycle-free subgraphs of the n-dimensional hypercube from √...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2008